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ABSTRACT 

Sequences defined by means of polynomials and highly differentiable quasi- 

periodic functions are considered. It is proved that under some conditions 

such sequences must assume small values modulo i, or even be dense mod- 

ulo 1. Negative results, demonstrating that some differentiablity conditions 

are necessary, are also obtained. 

1. I n t r o d u c t i o n  

The theory of diophantine approximations is quite well developed for polynomi- 

als. For example, one knows that,  given a polynomial P with real coefficients, 

the values P assumes at the positive integer points come, modulo 1, arbitrarily 
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close to P(0). More specifically, there exists a constant ~ > 0, depending only on 

deg P, such that the inequality 

1 
l iP (n ) -  P(O)]] < n- ~ 

(where IItl] denotes the distance of t E R from the nearest integer) has infinitely 

many solutions n E N (see, for example, [3, Th. 4.5, Th. 5.2]). Analogous 

results hold for the case of several polynomials [1, Th. 1], [2, (6), Th. 3]. We 

mention, however, that the best possible value of 8 in (1.1) is still unknown for 

non-linear polynomials. It is also well known that,  if P has at least one irrational 

coefficient (not counting the free term), then the sequence (P(n))~= 1 is uniformly 

distributed modulo 1 (henceforward - u.d.). 

Some results along these lines were obtained also for more general functions; 

see, for example, [12]. More generally, in [7] necessary and sufficient conditions 

for uniform distribution and for density modulo 1 were given for large families 

of sequences defined by means of "natural" formulas. All these results apply, 

however, to functions satisfying some monotonicity conditions, while the case 

of oscillating sequences is more difficult to deal with. A metrical result, due to 

LeVeque [13], asserts that for any increasing sequence an of integers the sequence 

an cos ana  is u.d. for almost every c~. Of course, this is not the case in general 

(i.e., for an arbitrary sequence an) for every a. One may inquire whether for 

some special sequences an the metrical result can be replaced by a global result. 

Furstenberg and Weiss [10] proved that for almost every a the set of solutions 

n of the inequality Ilncosnc~ll < E is not of bounded gaps for every ~ < �89 

(unlike the case of polynomials, where the set of solutions n of the inequality 

liP(n) - P(O)l I < ~ is of bounded gaps for every e > 0). They raised the question 

whether this inequality has a solution for every ~ and E > 0. 

This question was settled in [4], with further refinements obtained in [8]. It 

turns out that, not only does the inequality necessarily have solutions, but actu- 

ally the sequence (n cos ha)  is necessarily u.d. unless c~ is a rational multiple of 7r. 

Moreover, the results of these papers apply to sequences of the form P(n)f(Q(n)) ,  
where P and Q are arbitrary polynomials and f a periodic "highly differentiable" 

function. Specifically, there exist (effective) positive numbers s and p, depending 

only on the degrees of P and Q, such that, if ] is s times differentiable at the 

point Q(0), then the inequality 

1 
(1.1) I]P(n)f(Q(n)) - P(O)f(Q(O))ll < n---7 
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has infinitely many positive integer solutions n [8, Th. 2.2]. 

the inequalities 

C 
(1.2) [[n~cosna[[ < ---T_ 

(C being a certain absolute constant) and 

1 
(1.3) IInflsinnc~ll < ~--------T 

T/13 

Thus, for example, 

(~ > 0 arbitrary) have infinitely many solutions. In some cases it is possible to 

show that  the sequence P(n)f(Q(n)) is dense modulo 1, or even u.d. [8, Th. 3.1, 

3.2, 4.1, 4.2]. 

In this paper we improve some of the results of [8] in two respects. First, we 

want to consider the sequence P(n)f(Q(n)) with functions f which are not nec- 

essarily periodic. It turns out to be possible to deal with quasi-periodic functions 

(see Section 2). Another direction of extension, motivated by [10], is looking at 

sequences of the form P(n)f(Q(n)g(R(n))), where P, Q and R are polynomials 

and f and g periodic. We obtain positive results in both of these directions. We 

mention in particular that,  for the second case we can sometimes prove density 

modulo 1 (but not uniform distribution) by means of exponential sums. The den- 

sity result is thus quantitative, namely we obtain a lower bound on the number 

of terms of the sequence belonging, modulo 1, to various intervals. 

We also present an ad-hoc simple method which enables us to improve upon 

(1.2) (but not (1.3)). 

On the other hand, one may ask to what extent the smoothness conditions 

imposed on f ,  already in the case of the sequence P(n)f(Q(n)), are in fact 

necessary. Obviously, some continuity condition is inevitable. We prove a strong 

negative result, which implies as a very special case that  f may be differentiable 

any finite number of times, yet the small values result will fail for appropriately 

chosen P and Q. 

The main results are stated in Section 2. Section 3 deals with the proofs of 

the small values results, Section 4 - with the proofs of the density results, and 

Section 5 - with those of the negative results. 

We wish to thank J. Lagarias for helpful discussions related to the contents of 

this paper. 
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2. T h e  m a i n  resu l t s  

Recall that  a function f :  R ~ R is quas i -per iod ic  if it is the diagonal of a 

periodic function of several variables, i.e., 

f ( x )  = F(x ,  x . . . . .  x), 

where F: R ~ , R is periodic in each variable. Alternatively, we can write f in 

this case in the form 

f(x) = F(,~lZ, a2z , . . . ,  ~ z ) ,  

where F is of period 1 in each variable. The family of quasi-periodic functions 

extends that  of periodic functions, and it is thus natural to consider sequences 

of the form P ( n ) f ( Q ( n ) ) ,  where f is quasi-periodic. In the following theorem we 

take one step further. 

THEOREM 2.1: Let 19, Qx, Q2,. . ., Qr be polynomials of  degrees d, el, e2, . . ., er, 

respectively. Write: 

e j  

Qi(x)  = Z cijzl, 1 < j < r .  
i=0 

Suppose that 

(2.1) JJe~jn~lJ < 
1 

l < _ j g r ,  l < i < e j ,  k = l , 2 , . . . ,  
n~J,  

for some sequence (nk) and constants'cij > O, 1 < j <_ r, 1 < i < ej. Let 

F: R ~ ~ R be periodic in each variable. Assume that F is differentiable of 

d 1. Put  order L at the point (QI(0), Q2(0) , . . . ,  Q~(0)), where L > min,.j ~,j 

E = maxl<j<~ ej. Let 0 > 0 be such that, i f T  is any polynomial with degT = 

d + ( L - 1 ) E ,  then for every sutticiently large N the inequality JGT(n)-T(O)[[ < 

has a solution 1 < n < N.  Denote: 

70 = min TijL -- d 
l<_j<_,.,l<i<_~j d +/3 + iL 

Then the inequality 

(2.2) I IP(n)F(QI(n) , . . . ,Q , . (n ) )  - P(O)F(Ql(O), . . . ,Qr(O))ll  < 

with a suitable constant K,  has infinitely many solutions n. 

In view of [1, Th. 1], [2, (6), Th. 3] this implies 

K 
nO.~o/(l+~o) , 
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THEOREM 2.2: Given positive integers D and r, there exist (effective) numbers 

L E N and p > 0 such that the following holds. I f  P, Q1, Q2 , . . . ,  Qr are any 

polynomials of degrees bounded by D and F: R ~ ) R a function periodic 

in each variable and differentiable of order L at a neighbourhood of the point 

(QI(0), Q2(0) , . . . ,  Q~(O)), then (2.2) has infinitely many solutions n. 

Clearly, Theorems 2.1 and 2.2 yield corresponding results for functions of the 

form P(x ) f (Q(x ) ) ,  where f is quasi-periodic. Another consequence is 

COROLLARY 2.1: Let 19, Q1, Q2 , . . . ,  Q~ be polynomials and f l ,  f 2 , . . . ,  f~ peri- 

odic functions. I f  each f j is sufficiently many times (in terms of the degrees of 

the polynomials) differentiable, then there exists a p > 0 such that the inequality 

1 
[[P(n) f l (Ql(n) ) . . .  f,.(Q,.(n)) - P(O)f l(QI(O)) . . .  f~(Q~(O))ll < - -  

n p 

has infinitely many solutions n. 

The results are easiest to apply when all considered functions are infinitely 

differentiable. 

Example 2.1: For every positive integer r there exists a p = p(r) > 0 such that,  

for any O~1, O~2 , . . .  , Ot r E R ,  the inequality 

1 
IIn c o s  noq �9 �9 .cos noz~ll < - -  

u P  

has infinitely many solutions n. 

The following proposition deals with a very specific case, but enables to improve 

the result of [8] on small values of the sequence n~ cos na. 

PROPOSITION 2.1: Suppose f is periodic, twice differentiable at 0 and f'(O) = O. 

Then there exists a constant C such that the inequality 

C 
l lnf(na)ll  < 921/-"" ~ 

has infinitely many solutions n. 

For every a,/3 E R there exists a constant C such that  the in- Example 2.2: 

equality 

(2.3) I lnacos  nai l  < - -  

has infinitely many solutions n. 

C 
/.~1/3 
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Remark 2.1: While the exponent �89 in the denominator of the right hand side 

of (2.3) improves upon the ] obtained in [8, Prop. 2.1], it is probably still far 

from the best possible, which may be 1 - E or even 1. 

Note that Proposition 2.1 does not apply to prove an analogue of (2.3), with 

the function cos replaced by sin. In Remark 3.1 we shall explain why the method 

used to prove the proposition fails in this case. 

THEOREM 2.3: Let P be a polynomial of degree d >_ 1, f l  and f2 non-constant 
H functions with period 1. Assume that f~(Xo) = f~. (xo) . . . . .  f~t-1)(xo) = O, 

f~t)(xo) ~ O, for some xo �9 [0, 1] and l _> 2, that the functions f l  and f2 are 

differentiable at least 1 + ~ times in some neighborhoods of the points 0 

and Xo, respectively, and that f~s)(0) r 0 for some s >_ ~ + 2(l~1)" Then for 

every irrational a the sequence ( V(n)fx (n f2(na ) ) )~= 1 is dense modulo 1. 

THEOREM 2.4: Let P be a polynomial of degree d >_ 1 and f l  and f2 non- 

constant periodic functions with period 1. Assume there exists a point Xo �9 

[0,1) such that f~(Xo) = f~'(xo) . . . . .  f~t-1)(xo) = 0 • f~t)(Xo), where 

l > 2. Let eo < min{ ~-~-l, �88 } be a positive number, with the functions f l  and f2 

being [2d(1 + 1 )  + ~]  times differentiable in the whole interval [0, 1) and in a 

neighborhood of xo, respectively. Assume also that 

I/~J)(x)l + l/~J+l)(x)l + l/~J+~)(x)l ___ ao, j ___ 9d, x �9 [0, 1), 

for some ao > 0. Let I be any non-trivial subinterval of [0, 1), and a = eq + '1 

with 1,71 ___ 1/q ~. Then: 

[{n: 1 < n < ql+eo, (p(rt)fl(rtf2(rtot))) �9 i}1 >> qX-21-~. 

COROLLARY 2.2: In the setup of Theorem 2.4, the sequence P(n) f l (n f2 (na) )  is 

dense modulo 1 for every irrational a. 

COROLLARY 2.3: Let f ( x )  = P(x) fa(x f2(xa))  be as in Theorem 2.4. Suppose 

a is a real number for which there exists a constant u > 0 such that 

max{q: q <_ N, [Iqal[ <_ l / N }  >> N u. 

Then for any non-trivial interval I C_ [0, 1) 

I{n ___ iv: (f(n)) �9 I}1 >> g ~-3'~ �9 
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PROPOSITION 2.3: Consider the sequence n cos(n cos na).  

1. I f  ~- is irrational, then the sequence is dense modulo 1; moreover, for any 
7r 

non-trivial interval I C_ [0, 1), 

[{n: 1 < n < N; (ncos (ncosna) )  E I}[ >> N 2/3. 

2. I f  ~ is rational, write a = ~rc, where (p, q) = 1. Then: 

i. l f  q is odd then the sequence is u.d. 

ii. I f  q is even then the sequence is distributed according to a convex 

combination of  the Lebesgue measure on [0, 1) and the Dirac measure 

at O. 

In particular, i f  ~ is rational then the sequence is dense modulo 1 and for 

every non-trivial interval I C_ [0, 1) 

[{n: 1 < n < N; (ncos (neosna) )  �9 I}[ >> N .  

It is probably possible to replace the polynomials, at least in some of our 

results, by more general "nice" functions having regular growth at infinity, e.g. 

belonging to a Hardy field (see [5], [6], [7]). In this paper we shall give only a 

single example of this kind. 

PROPOSITION 2.4: For every a �9 R the sequence l o g n c o s n a  is dense modulo 1. 

Remark  2.2: It can be shown that there exist uncountably many numbers a for 

which this sequence is not u.d. The same is true if log n is replaced by any "nice" 

function (in the sense mentioned prior to Proposition 2.4) approaching infinity 

slower (say, ox/io- ~ or log log n). However, our proof of this fact fails if log n is 

replaced by (log n) 1+~. 

THEOREM 2.5: Let (a , , ) ,>l ,  (~n)n>l, (/2n)n_>l be three sequences of  real num- 

bers. Assume that 

1. #,~ # 0 for all n; 

2. am # a,~(mod 1) f o r m  # n; 

3. lim ]#,~[ = oo. 
Vt ~ C*~  

Then there exists a continuous 1-periodic function f ( x )  such that 

(2.4) /~.f(a~)  = /3 . (mod 1) 

for all n >_ 1. 

The following shows that some differentiability conditions on f are indis- 

pensable in Theorem 2.1 (even if the function is required to be periodic). 
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COROLLARY 2.4: Let P and Q be non-constant polynomials, with Q having at 

/east one irrational coefficient (besides the constant term). Then there exists a 

continuous 1-periodic function f such that 

1 
I lP(n) f (Q(n))  - P(O)f(Q(O))ll = 

for all sufficiently large n. 

The corollary follows immediately upon observing that the conditions guar- 

antee that all the values (Q(n)) are distinct modulo 1 from some place on. 

THEOREM 2.6: Let (an),~>l, (f~n)~>l, (/An)n>_l be three sequences of real num- 

bers, let t >_ 1, d > 0 and p be real numbers, and let k be a positive integer. 

Suppose that 

1. pn # 0 for all n; 

2. Ham - anII > dm - t  for all integers m > n >_ 1; 

3. l iminf ~ > 0; 

4. p > k t .  

Then there exists a 1-periodic C k function f ( x )  on R such that (2.4) holds 

for all n > 1. 

The proofs of the small values results depend on the same result for poly- 

nomials. As these results seem to be currently quite far from the best possible, 

one would expect a sizeable gap between the differentiability assumptions on f 

guaranteeing that  [[P(n)f(Q(n)) - P(O)f(Q(O))ll assumes small values and the 

counter-examples we can construct. It makes sense therefore to make the com- 
e 

parison in the case this obstacle is missing, namely for linear Q. To this end, we 

first make the following 

Definition 2.1: An irrational number a is t yp i ca l  if for every e > 0 the inequality 

1 
IIn~ll < nl+----~ 

has only a finite number of solutions n. 

Note that  it is well known that  Lebesgue almost all real numbers, as well 

as all irrational algebraic numbers, are typical. 
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COROLLARY 2.5: Let (a,~)n>l be defined by an = Inn), n >_ 1, for some typical 

number a. Let k >_ 1 be an integer. Then for any sequence (#n)n>_l with #n 7 t 0 

such that 

liminf lo.g [#n___~ > k  (2.5) 
n ~ o o  ~ o g  n 

and for any real sequence (/3n)~_>1 there exists a 1-periodic C k function f ( x )  on 

R such that (2.4) holds for all n >_ 1. 

Remark  2.3: It can be shown in a similar fashion that if condition (2.5) is 

replaced by 

lim log [#~_____~[ _ +oo 
n---,oo log n 

then f ( x )  can be chosen to be C ~176 

Another consequence of the foregoing is 

COROLLARY 2.6: Let deg P = d and Q(x)  = ax.  Then: 

1. I f  f is 1-periodic C a function, then the inequality 

[IP(n)f(Q,(n)) - P(O)f(Q(O))H < 

has infinitely many  solutions for every e > 0. 

2. I f  a is typical, then there exists a 1-periodic C a- 1 function f such that 

1 
[[P(n)f(Q(n))  - P(O)f(Q(O))[[ = 5' n = 1, 2 , . . . .  

In fact, the first part follows from the discussion in [4, Sec. 2], the second 

- from Corollary 2.5. 

Thus, in the sense discussed above, the gap in the differentiability condi- 

tions is very small. We raise the following 

QUESTION: Do there exist a l-periodic continuously differentiable non-constant 

function f on R and an irrational a such that n f ( n a )  is an integer for every n? 

Remark  2.4: By techniques similar to those used in the proof of Theorem 2.5, 

one can easily show that such an f does exist in the following two cases: 

1. The condition on f is relaxed by only requiring that  it satisfies Lipschitz 

condition (a may be any badly approximable number). 

2. The sequence is replaced by n t f ( n a )  with t > 1 (a may be any typical 

number). 
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3. P r o o f s  o f  t h e  smal l  va lues  r e su l t s  

Given t e ~, denote by {t} the unique number in [-�89 �89 with t - {t} e 77,. 

Proof  of  Theorem 2.1: We may assume that F is of period 1 in each variable 

and that all the polynomials Qj are without constant term. Express F in some 

neighbourhood of (0, 0 , . . . ,  0) in the form 

,, ,. (maxlxjlL) F ( z l ,  z 2 , . . . , x ~ )  = E a h,_.,t z 1 . . . z ~  + 0 
O<II+...+I~<L 

for suitable constants at1 ..... t~. Let (nk) be a sequence of solutions of (2.2) and 

(hk) an arbitrary sequence of positive integers. Putt ing 

y ( x ) =  F ( O l ( X ) , . . . , Q r ( x ) ) ,  g ( x ) =  P ( x ) f ( x ) ,  

we have 

P ( h k n k ) F ( Q l ( h k n k ) , . . . ,  Q,.(hknk)) -- P ( O ) F ( Q I ( O ) , . . . ,  Q~(O)) 

= g(hknk)  -- g(O), 

and it has to be shown that,  if (hk) is chosen appropriately, then g(hkn~) - g(O) 

is very small modulo 1. Set d = deg P. Then: 

f ( h k n k )  = F ( { Q l ( h k n k ) } , . .  ., {Q~(hknk)})  

F i i i i = hk{Ci lna} , . . .  , hk{cirnk 
i = 1  

= ~ a~, ..... u h ~ { c ~ n ~ }  . . .  h~{e~n~} 
O<ll+...+l~<L 

/ ,, . . "~ ~"~ 
+o / m ~  S-'h~ll~jn~:ll/ / \'-<,-<'~ ] ] 

/ ,, . k~ 'k  
= F ( O , . . . , O ) + S ( h k ) + O  / m ~  3- 'h~l lc~jn~l l /  / , 

t'-<,-<'~ / ] 

where S is a polynomial without free term of degree (L - 1)E in hk whose 

coefficients are themselves polynomials in nk and {cijn~}, 1 <_ j <_ r, 1 < i < ej. 

Therefore 

- m a x  h k l l c i j n k l l  , (3.1) g(hknk)  g(O) = S l (hk)  + P ( h k n k ) O  l<j<,. 
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where $1 is of degree d +  (L - 1)E in ha. Let (Ha) be a sequence of real numbers 

with Ha ----+ oc, to be determined later. Then for each sufficiently large k the 

inequality 

1 
(3.2) s l (ha)  < ;H-~ 

has a solution ha with 1 < ha <_ Hk. For the last term on the right hand side of 

(3.1) we have: 

(( / d d m a x  t a II ij all ] max  h~]Icijn~) << H~n  a P ( h a n a ) .  0 l < j < r  

<< max (Hd+iLnd-r 'JL~ 
~<_~<_~ k a k / "  

Taking Hk = n~, where 7 > 0 will be specified later, we obtain: 

(3.3) 

/ P ( h k n k ) "  0 m a x  ~ i i maxl<-J<-r,l<'<.j(d-k~fd+i'yL-vu L) \1<~<. ~ h k { c i : a ) }  << na - - 

Substituting (3.2) and (3.3) in (3.1), we arrive at: 

( 3 . 4 )  IIg(hknk) g(0 ) l l  <~<~ n ;  0~/ maxl<J<"l<'<'J(d+'~d§ 
- + n~: . . . . .  

a < L for any i and j ,  for sufficiently small 7 > 0 the exponents in both Since ~--~- 

terms on the right hand side of (3.4) are negative. Upon increasing % the first 

term improves, while the second term becomes worse. 

The optimal choice for 7 is obtained when for the first time 

0 7 -- r i jL  - iTL  - d - 7d ,  

namely for 

This finally yields 

"/0 = min r i jL  - d 
l ( j~r , l~ i~e j  d + 0 + iL " 

C K 
(hknk)~ ' 
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thus proving the theorem. I 

Proof  of  Proposition 2.1: Since f '(O) = 0, we have for a suitable a E R 

/ ( x )  = a + O(x 2) 

a s x  ~ 0 .  It follows f r o m [ l l ,  p. 43, Th. 3] that, given any0_<  #_< 1, the 

system 
1 1 

F//.L ' n l - - P '  

has infinitely many solutions n. As n ~ c~ along this set we have 

{n f (na )}  -- {n (a q- O ({n~}2))} •• Ilnall + nlin ll , 

and therefore 
1 1 1 C1 

[[nf(na)[[ <_ - ~  + n .  Cln-S:~_2~ <_ ~ + n1_2-------- ~ 

for an appropriate constant C1. With the choice # = �89 the proposition follows. 

I 

Remark 3.1: Examining the proof of Proposition 2.1 it is clear that the analogue 

of (2.3), with n~ cos na  replaced by n3 sin na,  could be proved in the same way 

if it would be true that  the system of inequalities 

J a 1 1 1 n - < ~ - ,  [[n/31] < n--~ 

and has infinitely many solutions n (which seems plausible if both ~ ~ are 

irrational). However, we recall that, although in the 1-dimensional case one can 

obtain the same results for inhomogeneous approximations as for homogeneous, 

in the case of simultaneous approximations the quantitative analogues are no 

longer true. Namely, for any x the inequality [[nx[[ < 1In has infinitely many 

solutions, and so has the inequality Jinx - xo[[ < 1/n for arbitrary fixed xo if x 

is irrational. However, whereas the system 
1 1 

has im'initely many solutions for any x, y, there exist x ,y ,  xo, Yo, with 1,x, y 

linearly independent over Q, such that the corresponding inhomogeneous system 
1 1 

 01i < II y- y011 < 

has but  finitely many solutions (even upon replacing : ~  by a function e(n) 

converging to 0 arbitrarily slowly) [9, Th. V.XV]. 
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4. P roof s  of  the density resu l t s  

We shall need a few lemmas. The following was proved in [8, Lemma 4.1]. 

LEMMA 4.1: Let f E cJ[x1,x2],  and suppose that 0 < A <_ f(J)(x) << A. Then 

E (f(x)) <~<( X)~ 1/(J-2) -~- X 1-2/J -[- X()~X4-8/J) -2/J -{- 1, 
XI <x<_X~ 

where X = X~ - X l  and J = 2 j, the implied constants depending only on j. 

LEMMA 4.2: Let 

N = N ( ~ , v )  =l  {x e [X ,2X) :  0 < ~ < { f (x )}  < ~ + ZX = v < 1} 

Then for any 6 < A/4  

IN-X~I<<x6+2~, rain A'~2j2 '62j3  E e(jf(x))  
j=l X<_x<2X 

Proo~ Denoting by X[~,b] the characteristic function of [a, b] we obtain 

(4.1) 

(2~) -2 

5 5 

E f f ~[u-t-25,v-25] (f(x)-}-tl+ t2)dt2dtl <<_ N 
X<_x<2X -5-5 

5 6 
- - ( 2 ~ ) - 2  E f f X[u-25,v+26] (f(x)q-tl-~-t2)dt2dtl. 

X<_x<2X -5 -5 

Expanding X[a,b] into a Fourier series, we get 

(4.2) 

6 6 

(26) -2 / X[~,b](f(x) + tx + t2)dt2dtl = b - a + E aje(j f(x)) ,  
- ~  - 5  lJl =1 

where 

and therefore 

(4.3) 

aj = e(-J(b + a)) sinTrj(b - a) (sin27rj6~ 2 
2 7rj " \  27rj6 ] 

b - a  1 
lajt <_ min{b - a,  47 r2 j252 ,47 r352 j3  }. 

Substituting (4.2) in (4.1) and using (4.3), we easily complete the proof. | 
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LEMMA 4.3: There exist  constants 0 < Cl < c2 such that  for every irrational 

number  a the inequali ty 

C1 O~ P C2 
(4.4) q-5 -~ - ~- q-5 

has infinitely m a n y  solutions v with (p, q) = 1. q 

Proof: We prove it, say, for cl = 1, c2 = ~ .  The  l e m m a  is well-known if we 

take cl = 0, c2 = ~5" Assume tha t  for some a we have only finitely m a n y  p, q 

wi th  (p, q) = 1 satisfying (4.4). Take sufficiently large Pl and ql with 

_ P l  < ql 2 '  (Pl ,q l )  1. 

F rom the e lementary  theory  of Farey fractions it follows tha t  we can find Pl < 

P2 < 2pl,  ql < q2 < 2ql for which Plq2 - P2ql = 1. Then: 

P l __ __ ~ - -  --~1 

Pl 1 cl > - -  
q2 - qlq2 q~ 

1 1 1 2 1 1 

qlq2 3q~ > - > - - "  - qlq2 3qlq2 3qlq2 - 3q~ 

On the other  hand: 

pl 1 1 10 
- qlq2 3q~ - 3q~ 

This  proves the lemma.  | 

Proo f  o f  Theorem 2.3: Using L e m m a  4.3, take a (large) q such tha t  ~ = a - p / q  = 

O/q 2 for an appropr ia te  p with (p, q) = 1, where 1/4 < 101 <: 3. Define f by 

f ( x )  = P ( X ) f l ( x f 2 ( x a ) ) .  P u t  j3 = f2(xo).  

Assume first t ha t  ~ is rat ional ,  say ~ = a/b. To prove the theorem,  it 

suffices to show tha t  every interval [u, v] contains at  least one point  of the form 

{ f (n )}  for some n = b(mq + k), where 2 M  >_ m >_ M = q(g-1)/(Z+l)/logq and 

[k I <_ q/2,  kp =- ko = [ x~-b~ ] (modq) .  Denot ing by Y the number  of such n 's ,  we 

employ  L e m m a  4.2 with 6 = ~ and A = v - u to get 

4 M A  { 25 I 
j = l  M < _ m < 2 M  
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For j > 8 /A  2 we estimate the sum trivially and obtain 

M A  28~1 Z e ( j f ( n ) ) l ' m i n { A '  25 
j = l  M < m < 2 M  A J-----2 } " 

We now want to show that  ~ e( j f (n) )  = o(M),  which will prove that  
M < m < 2 M  

N >> M, and thus establish the theorem in this case. In fact 

= P(n) f l (ng(n)) ,  

+ m l ) - n i l )  

where 

(4.5) 

= - - - x o  ( 1 + o ( 1 ) ) , - ,  . 
q 

Hence 
M t+l 1 

ng(n) ,.~ qt-1 "~ (logq)t+l" 

1 such that  a ,  # 0, and let Let s be the smallest integer > ~ + ~ 8. 1 ~ J 

r be the smallest integer satisfying 

1 2dl 
r >  - + - -  

- 2  l - 1  

Then we have: 

r <_d+ s(l + l ) .  

Now 

dm r =a~dm--- 7 P (n ) .  ( n T l + b k o / q - x o )  l �9 (1 + o(1)), 

so that  

(4.6) d~(f(n)) 
dm ~ 

(Mq)a ( g ) �9 
M .  (logq) -(t+1)8", M d - ~ + ~  lo M (-r6r-~) (t+l) 
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Denoting the right hand side of (4.6) by )~, we see tha t  

M-3/2-~ << )~ < M - l ~  2. 

Note also tha t  r _> 2d + 1 >_ 3. Employing Lemma 4.1 (with r in place of j ) ,  we 

obtain 

I E e( j f (n) )  << M 1-1/(2J-4) = o(M). 
M < m < 2 M  

Now we shall deal with the case of irrational ~. Write 

~q = Pl/ql  + ~1, 

where Iml <- 1/qlQ, ql <_ Q -~ q(l-1)/(2t+2), (pl,ql) = 1. Let  Ikl _ q/2, kp - ko 

(mod q), ko = [qxo], and mo is an integer satisfying 

[ImoqlO1 + (qqlmo + k)g(qqlmo + k) + kfl - xlll << ql~l + ql(moql)tq l - t ,  

where g(n) is as ill (4.5) with b = 1, Xl and mo to be specified subsequently. The  

existence of such an mo of order of magni tude  as in the following is ensured by 

the equali ty 

, 4  
[rnql01 + (qqlm + k) . g(qqlm + k)] = ql~h + 0 (ql(moql)tql-t)  . 

dm 

Take n = qql (too + m) + k. 
Q2 log q and m ,,, Suppose first tha t  [rh I < . Then  we select m0 "~ q, 

/ xd d--r+�89 M = mo(logq)  -1-2.  Let  r be the minimal integer for which ~qql) mo < 1. 

Choose a point  x l  such tha t  f~ ')(Xl)  >> 1. Pu t  

gl(m) = ng(n) - (moqql + k) .  g(moqql + k). 

Since 
f(i) [xl ~ 

f ( n )  = P(n) E 1 ~ '[,rtql~l + gl(m)]  4 + R(m)  
i 

for some small error term R(m),  we have 

d"(f(n))  _ f~r)(x1)P(n)[qlTh + dgl,m,]~..( ~ [1 + 0 ( 1 / l o g q ) ]  
din" dra J 

"~ (moqql)dmor (log q)(l+l), ,  
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whence M -3/2-~ <(<( )~ < M -1/2. Similarly to the case of rational/~, we arrive at 

the inequality N >> M. 

lo ~ a n d m , ~  M = It remains to treat the case I~11 > !_~. Take m0 ~ qlm 

Io'~q" Let r be the smallest integer such that (qql)dMd-r+�89 < 1, and choose xl 

as in the preceding case. The conclusion of the proof is as before. | 

Proof of Theorem 2.4: Denote: 

( ~q q-2~0< ~ _ x 0  <2q-2~0} K= k: lkl <_ , _ _ D 

F o r k  E K write qf2 (kq_~) = q~ + rh with ( P l , q l ) =  1,1 < ql _< Q = qeO/2 and 

Ir/ll < q~Q. Denote also 

A=A(k)= {n=mqq1+k:m,,~M=Q18/19}. 

Putting g(n) = f2(na )- f2 ( ~ ), and using the equality Obviously, IAI q9eO/19. 

f2 (k~pq)-(l 11),f~l)(Xo)(~--xo)t-l(xq-~ ' 

where kl = kp (modq) and I ~ - xo "~ q-2,o, we get 
I q 

Therefore 

ng(n) .., IM2q2q2q-2"~ < M2Q2q -2'o < Q-2/19. 

Also, Imql011 < M/Q ,~ Q-1/19. For any n e A we have: 

Put: 

f1(nf2(na))= fl (nf2 (kpq + n r / ) ) =  f l  (nf2 (kpq ) +ng(n)) 

= fl (kf2(k~pq ) +mq1(~11+rh) +ng(n)) 

= f, (kf2 ( ~ )  + mql~h + ng(n)) . 

K1 = (k e K: Iqiml >- 1/(qxQ1/2~ �9 
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We want to show that [KI[ >> ql-2~o, namely [K1] ,,, [K[. To this end, it clearly 

suffices to prove that [K - KI[ = o(ql-2~~ In fact, we need to find an upper 

q q l f 2 ( ~ )  1 forsome bound for the number of those k �9 K satisfying < 

qi < Q (where ki =- kp(modq)) and L �9 [Xo- 2q-2~~ q-2r Employing -- q 

Lemma 4.2 with A = 4~ = 1/(qyQ1/2~ we obtain: 

( 1 } Z e ( j q q l f 2 ( ~ )  ) I K - K I [ < <  Z Z A +  Z ~ m i n  A,~-j~ 
qi<Q k E K  qi<_Q j = l  kC=K 

= o([KI) + ~ ~ min A, ~-~ 
ql <Q j = l  qxo-- 2q 1-2~o <_k <_ q x o - q 1 -  2~ 0 

To estimate the inner sum over k use Lemma 4.1 with j -- 2 and 

J (Jqql/2(t))l=Jql  jqlq 
Therefore: 

~_, e ( J q q l f 2 ( k ) )  
qz0--2q 1-2t0<_k<_qz0-ql-2t 0 

<<qi-2~o x/jql q- l-2(t-2)~o 

1 + 
x/jqlq_l_2(l_2)eo ' 

so that 

IK - Kll = o(IKI) + 0 [q1-2r176176 + ~/ql+2(,-2)r [ - -  

= o([KI) + o(q x-2r176 = o([K[) 

(here we have invoked the condition on co). 

Denote B = (.J A(k) and BI = {n �9 B: {f(n)} �9 I}. The foregoing 
kEK1 

estimates yield IBI >> ql-2r = qi-29~o/19. We ought to show that the 

same holds with B replaced by BI, namely IBII >> qi-29eo/19. 

Let jo = jo(k) be the smallest integer satisfying (qql)dlqlVll [jo-d _< M-i~3. 
Since (qql)dlqi~h I j~ < (qQ)dQd-jo, one verifies easily that jo < [2d(1 + l/co) + 

4/3]. On the other hand, since 

M-l~ 3 > (qql)dlqvlll j~ > (qql)d(qiQ1/2~ d-j~ 
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we have jo > 9d > 9. Set: 

Jl =jl(k) =min{j:J ~J~ f~J) (kf2 ( ~ ) )  ~ 3 }"  

The conditions of the theorem imply that jo - d < j l  _< jo - d + 2. Taking 

r = j :  + d, we get 

i=0 

"~ ~(~)i=o ~ ~,~/t/1 ) dr" /~- Xind-i,lql H1 I ~  Ir-i'tr-)jl'i'(kf2 (kP~kq//(1 + o(1)) 

"v(qql)dlqlrhlr-dlf~J:)(kf2(?)) I 

,,, (qql)dlqlr]ll jl < M-:/3 

and 

A > (qqx)alql~hl y~ >_ M-1/3[ql~?ll 3 >_ M-1/3Q -321/20 >_ M -11/3. 

By Lemma 4.2, with A = 55 = III, 

l--lOOj~_lmin{A'~--~}'k~llm~Me(jf(n)) ] �9 

(with our r in place of j from the lemma), we finally 

kEKx m~M 
Employing Lemma 4.1 

obtain 

IBt[ >> Mq 1-2"o 

+ O ( ~ m i n  { A, ~-~-ff } ql-2"~ 
\ j = l  

>> Mql-2eo ql- 2~ 
: 1 9  } 

which completes the proof. II 

+ M - ~  + ( M - ~ + 4 - ~ ) - - ~ ] )  

Proof of Corollary 2.2: Follows from Theorem 2.4 (and Lemma 4.3). | 

Proof of Corollary 2.3: Write a = qe + r /with (p,q) = 1, N ~(1-~~ < q <_ N 1-~o 

and [~] <_ ~ 1  <_ ~ .  In view of Theorem 2.4 

t{n <_ N: (f(n)) e I}] > I{n < ql+eo: (f(r~)) �9 I}[ > ql-2,o > gu(1-2r | 
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Proof of Proposition 2.3: 1. We proceed as in the proof of Theorem 2.4, but 

make our choices with more care. Taking r = 2, Q = r and M = ~IQ with 

sufficiently small ~1 yields the desired conclusion. 

2. Split the sequence into the 2q subsequences obtained by restricting n to 

the various congruence classes modulo 2q. Letting n = 2qm + k for some fixed 

0_< k < q, we have 

n cos(n cos nor) = (2qm + k)cos((2qm + k)q,), 

where -), = cos ~ l r .  Clearly, "7 is an algebraic number, so it is not a rational 

multiple of r unless 3' = 0, namely kp =_ - ~ ( m o d q ) .  Now if 3' = 0 then the 

subsequence in question consists of integers, whereas otherwise it easily follows 

from [8, Th. 4.1] to be u.d. Now if q is odd then 7 # 0 for each k, so that  our 

sequence is a disjoint union of 2q subsequences, each of which is u.d., whence 

the sequence itself is u.d. as well. If q is even then some of the 2q subsequences 

are u.d. while the others are identically 0 modulo 1. Thus our sequence is 

distributed modulo 1 according to the corresponding convex combination of the 

Lebesgue measure on [0, 1) and the Dirac measure at 0. II 

r t  c~ Proof of Proposition 2.4: Take a sequence nk with II k~-~ll < ~ for each k. For 

an arbitrary fixed positive integer h we have 

loghnk .coshnka = (logh + lognk) ( l  + O ( ~ . )  ) 

{lognk 
= l o g n k + l o g h + O ~ ,  n2 ] . 

Passing to a subsequenee we may assume that the sequence log nk converges 

modulo 1, so that  

log hnk �9 cos hnka ~ log h + b 
k---*oo 

for a certain b. As the sequence (log h)~=l is clearly dense modulo 1, this proves 

the proposition. | 

5. Proofs of the negative results 

Proof of Theorem 2.5: Since lim #n = +oo ,  one can choose a sequence 
n..-~oo 

n o = O < n l < n 2 < n a < ' . "  
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such that  [#,,[ > k 2 for all n > nk. For all k _> 0, put Mk = NN [nk + 1, vtk+l]. 

(Thus {Mk}k_>l is a partition of N into finite sets of consecutive integers.) 

Denote by Cp(R) the set of continuous 1-periodic functions on R. Let 

fo(x) E Cp(R) be an arbitrary function such that  (2.4) holds for all n E M0. 

Proceeding by induction on k, one constructs the functions fk (x)  C Cp(R) as 

follows. First define fk on a finite set 

0, n _< nk; 
k--1 

fk(o~,~) = #~l(J3n - E #,Jj(O~n)), n �9 M~; 
j=o 

(where (x) = x - [x] stands for the fractional part of x), and then extend fk to 

be piecewise linear and 1-periodic on R. Thus we have 0 _< fk (x)  < ~ (since 

IPn[ > k2 for all n > nk). 
o c  

The function f ( x )  = ~ fk (x)  is easily seen to satisfy the conditions of the 
k----0 

theorem. | 

Proof of Theorem 2.6: Without loss of generality we assume that d < �89 Fix a 

r �9 C~(R)  supported by the interval [-�89189 such that  0 _< r <_ 1 and 

r = 1. For any s, 0 < s < 1, put 

0s(x) 0 ( s ,x )  r x i = = _ _  �9 c ~ ( R ) .  
i------oo 

It is clear that  r is 1-periodic and that,  for every k >_ 0, 

max I r  ~ - k  m a ~  I r  I 
x ag 

where r = ( d )  k r 

The required function f is defined by the series 

o o  

:(x) = 

i = l  

where 
U ~ ( x )  = b i r  x - ~i), 

d .  (2i)- ' ,  8 i ~ - ~  

and the constants bi are defined inductively: 
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and 

bn+l  ~- i=1 i=1 = , n _ > l .  
~ n + l  ~ n + l  

Denote 

2 m _ l  2 ' ~ _ I  

g in (x )=  Z b i r  = Z U,(x), m >_ 1. 
i~___2m--1 i_~.2m-1 

Clearly f (x)  = ~ g,~(x). Moreover, the addends in the sum for gin(x) 
m ~ l  

have pairwise disjoint supports (due to condition 2 and our choice of si) and 

therefore for each r = 0, 1 , . . . ,  k and m > 1, we have 

max t 9(~)(x) I <- max{b~l 2 ~ - 1  < i < 2 ~ - 1 } -  ( s 2 , . )  -~" m a x  I r  I 
x 2c 

_< c1" max{/~-l[ 2 m-1 < i < 2 m - 1}. 2 m~t 

~ c22tort-rap ~ c22-m(p-kt), 

where the constants cx, c2 do not depend on m or x. 

Thus f (x)  = ~ gin(x) converges in the Ck-norm (by condition 4) and 
m ~ l  

therefore f (x)  is in C k. It  is also clear that  f (x)  is 1-periodic because each U~(x) 

and gin(x) is. Finally, the choice of the bi assures that  (2.4) holds. | 

Proof of Corollary 2.5: Choose any p such that  

lim inf log I#n_____~[ > P > k, 
n ~ oo log n 

then choose t such that  

Now we can apply Theorem 2.6. 

l < t <  p 

| 
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